

Abstract-- In this work a general framework, called Uniform
Coevolution, is introduced to overcome the testing problem.
This framework is based on competitive evolution ideas
where the solution and example sets are evolving by means
of a competition to generate diff icult test beds for the
solutions in a gradual way. The method has been tested with
the density par ity problem in cellular automata, where the
selected examples can biased the solutions founded. The
results show a high value of generali ty using Uniform
coevolution, compared with no coevolutive approaches.

Index terms—competitive coevolution, cellular automata,
density classification problem

I. INTRODUCTION

Coevolution refers to the simultaneous evolution of two or
more species, where the survival of each species depends
one each other. This process has proven its capabilities of
generating complexity in nature. From the computational
point of view, a competitive system is composed of
several confronted subsystems where the evaluation of a
subsystem depends on the performance over the opposite
one. The ideas of coevolution have been introduced into
the field of evolutionary computation from different
points of view:

Applying coevolution: One of the first authors in
applying coevolution in an optimization problem was
Hillis in his work about coevolution of parasites for
improving solutions in a sorting networks problem [1]. In
this work, the competition takes place between individuals
solutions and individuals examples. These examples were
generated to be a good test bed for the solutions. In this
way both, populations of solutions and population of
examples were competing to beat one each other. The
result was a better method to generate solutions for the
sorting nets problem. Further works have applied these
ideas to other optimization problem [2].

Coevolution in game theory: Some related works have
been done in the field of game theory. This field is a good
example of domain in which the ideas of coevolution

Computer Science Dept. Universidad Carlos III de Madrid
Avda. Universidad, 30, 28911, Leganés, Madrid, Spain
e-mail: aberlan@ia.uc3m.es

could be easily tested. Angeline [3], used coevolutive
ideas in the game of Tic Tat Toe. In this work, individuals
are different game strategies, they compete one against
each other. Therefore, the fitness of each individual does
not have an absolute value, but a value depending on the
goodness of their opponents. These ideas have been
extended in other games like the game of Othello [4] or
the game of Tag [5] and even generating theories of
learning in games, in competitive environment [6].

Theoretical works: More recently, some works for
establishing the theoretical foundations on coevolution
have been done. Paredis, in 1996, proposes a general
framework for the use of coevolution to boost the
performance of genetic search [7], and introducing a new
type of Genetic Algorithm called Co-evolutionary Genetic
Algorithm. Rosin and Bellew [8] introduce three new
techniques in competitive coevolution: Competitive
fitness sharing, shared sampling, and hall of fame; and
provide several different motivations for these methods
and mathematical insights into their use.

In the present article, a new method, based on Hilli s's
ideas to use coevolution for overcoming the testing
problem is introduced. We propose a general framework
to apply coevolution to any evolutionary computation
technique, in such a way that the examples could evolve
towards optimal data examples.

II . THE TESTING PROBLEM

In some previous works [9], [10], [11], we have studied
evolutionary systems and founded the over-adaptation
problem. In these cases, some rules (or neural networks)
have been evolved for navigation problem in robotics (or
learning rules for neural networks have been found). In all
cases, the achieved solutions were ad hoc for specific
situations. For instance, in the robot navigation problem,
when the robot had to face new situations, new rules had
to be evolved. All these problems are referred in the
literature as the testing problem.

To overcome the testing problem Rosing and Bellew [8]
suggest a new Co-evolutionary method, the shared
sampling. In this method a population of examples is
always kept. Each example of the population is evaluated
computing its performance over a previously selected set
of solutions. In the same way, each solution is evaluated
computing its performance over a previously selected set

SEARCHING GENERAL CELLULAR
AUTOMATA RULES USING

EVOLUTIONARY COMPUTATION

Berlanga A., Isasi P., Sanchis A., Molina J.M.

of examples. The selection of the examples is carried out
proportionally to the evaluation of examples. The
examples with better general evaluations are preferred as
test cases for the solutions, and their evaluations are
computed again.

The previously mentioned Hilli s' solution [1] is similar. In
this case, the examples are not selected, each time an
evaluation of a solution is needed. By the opposite, each
solution has a subset (subpopulation) of examples related
with it. This subset is kept constant, and it is in continuous
evolution.

The evolution of the examples, in both cases, tries always
to generate harder examples for the solutions. As the
solutions are more complex and accurate, they must prove
their capabiliti es with more sophisticated and complex
examples.

In some cases the above-proposed solutions could
generate a serious problem. For instance in a problem
where the generation of good solutions over reduced
examples set is a very diff icult task. In this case:

• If the examples evolve towards hard data sets, the
process could end into an impossibilit y of achieving
solutions for these hard example sets, and the
continuous adaptation of the examples could stop the
adaptation of the solutions. These are cases in which
the fitness landscape is abruptly sharpened by the
examples.

• If the adaptation of examples process is carried out in
such a way that the adaptation of solutions is allowed
the solutions could reach in a process of over-
adaptation, making more diff icult the generation of
more accurate solutions. In these cases, the examples
are not modified too much in order to allow the
generation of solutions, but the generated solutions
become good for the particular example set, and
solutions are not able to solve the problem for
different examples.

These two problems imply some diff iculties in the process
of evaluation of the solutions:

• Firstly, as the examples set is shared for all solutions,
even if the evolution of examples was slowed down,
solutions could be faced with too many diff icult
examples. A good example for a solution could be a
bad one for another. When the examples are too
diff icult, there is no selective pressure for solutions
to evolve. The fitness values of all solutions are
similar, low fitness, and there is no way of selecting
good individuals to improve solutions.

• Secondly, when a population of solutions has been
adapted to an examples set, the change of the
example set could have negative consequences. The
fitness landscape changes abruptly and the
previously evolved solutions have no meaning of
evolving toward the new fitness landscape.

For overcoming these problems, we propose, in this work,
a new method of adjusting coevolution to allow both the
evolutions of good solutions and hard test examples in
diff icult generalization problems.

III . UNIFORM COEVOLUTION

The architecture is composed of a population of solutions
and a set of populations of examples (one population of
examples for each individual in the population of
solutions). This structure reflects what it was called
Independent Examples Sets.

The solutions and examples systems are named
respectively:

• Solutions Generator System (SGS). - It is composed
by a population of solution individuals (SI). For
computing their fitness, is necessary to face each
individual with a set of different situations, examples,
represented by a population in the Examples
Generator System.

• Examples Generator System (EGS). - It is a meta-
population composed of meta-individuals, which are
populations of examples (PE). Each PE is related
with a SI. Example individuals (EI) compose the PE.
The fitness of those individuals is inversely
proportional to their related SI fitness, when
operating over them.

The evolution of each system depends on the other’s
evolution. The general procedure is as follows:

1. Initialization of the populations:
1.a. SGS initialization (m SI individuals)
1.b. EGS initialization (m PE of n EI individuals each)

2. Computation of the fitness
2.a. Evaluation of the SI over each individual EI in its

related PE
2.b. The fitness of the SI is a combination of the above

evaluations
2.c. The Fitness of the PE is set inversely to the fitness

value of the correspondent SI
3. Generation of new populations

3.a. PE evolutions by means of generation of new EI's
applying an ad-hoc genetic operator (Incremental
Genetic Operator -IGO-)

3.b. EGS and SGS evolution

3.1 Solution Generator System

The objective of this system is to gradually generate better
solutions to a particular problem. Any evolutionary
computation method can be used, where an individual
represents one problem solution. The evolution of the
SGS follows the dynamics of the evolutionary
computation method selected.

Computation of solution's fitness: The generation of
better solutions is driven by the evaluation function, also
called fitness function. Each individual is evaluated over a
set of examples. Lets call PEi the examples set of the
individual i, this population is composed of several
independent blocks (A..Z), which meaning will be
explained later. Therefore EIij

A is the j-th example of the
block A for the set PEi. As previously mentioned, for the
smoothing fitness landscape mechanism, a linear
combination of evaluations is used as fitness value of the
individual. The fitness for an individual i is computed
using the evaluation values of that individual over a set of
n examples, in equation 1.

() () i
B

nb

j
i

j
B

i C
nb

SIF
SIF σ−= ∑ =1

(1)

Where F(SIi) is the final fitness of the i-th solution
individual, nb is the number of blocks in the population of
examples, σB

i is the deviation of the fitness values of the
blocks for SIi, C is a constant measuring the importance of
the deviations over the normalized total fitness of the
blocks, and is Fj

B(SIi) the fitness of SIi for the block j.
This value is computed following equations 2 and 3.

() ()∑ =
=

nex

k

j
iki

j
iki

j
B EISIfSIF

1
,α (2)

∑ =

=
nex

k

j
ik

j
ikj

ik
w

w

1

α (3)

Where f(SIi, EIj
ik) is the value of the evaluation of SIi over

the example EIj
ik, nex is the number of examples of each

block. The wj
ik values are used to weight the importance

of each example in the total computation of the fitness of
a SI. The w values depend on the proximity between the
fitness they are weighting and the maximum fitness, and
they are computed by the equation 4.

(4)

Where ai is a measure of the evolution degree of the
individual over its examples set, and the βj

i gives an idea
about how the example j contributes to the total fitness of
individual i. The ai values are computed by equation 5.

 (5)

And the β values by equation 6.

(6)

Where Fmax is the maximum fitness value that a SIi could
ever reach, fi,max, fi,min are the maximum and minimum
fitness values reached for SIi over it related examples set
respectively, described through equations 7 and 8.

(7)

(8)

3.2 ExampleS Generator System

The second subsystem in Uniform Coevolution is called
Examples Generator System (EGS). The EGS is a meta-
population composed of a set of populations { PEi} .
Therefore, the EGS is composed of two dependent
evolutive systems: the meta-population and the PEi, one
embedded into the other.

Meta-population. As a way of developing the
independent examples sets idea, the examples are divided
in M independent sets PEi, which are the individuals in
the meta-population. Each PEi is related and competes
against a unique solution SIi. Individuals PEi is composed
of a number of chromosomes. These chromosomes are the
previously mentioned blocks of the PEi. Each
chromosome represents a set of examples. These blocks,
that could be considered independent and evolves in an
independent way, are needed for crossover purposes.
When the individuals in the meta-population interchange
their genetic material, the blocks are interchanged.

Population PEi. All the individuals EIij in a block are
generated from an especial individual called “seed
example”. The generation of EIij is based on a particularly
designed Genetic Operator called Incremental Genetic
Operator IGO. This generation process constitutes the
unique method for evolving PEi.

Evolution of population. Initially all the seed examples
of the blocks are identical and randomly generated. The
individuals in the blocks are all the same and equal, in this
initial step, to their related seed example.

In furthers steps of evolution, the individuals in a block
are generated from the seed example by the Incremental
Genetic Operator (IGO). Also the blocks of PEi are
inherited by the offspring from their parents.

Incremental Genetic Operator. For the designing of the
IGO is necessary to define a distance function between
examples. This distance is a measure of the differences
existing among examples: most different are two
examples a higher value outputs the function and vice-
versa, equation 9.

E × E →ℜ (9)

Where E is the set of all possible examples for a particular
problem.

(){ }N

jijimini EISIfMinf
1, ,

=
=

() ()
()2

11

1

1111

−




 −−+


 −−
=

−−

e

eeee
w

i
ji

i
ji aa

j
ik

ββ

()
max

n

k

j
iki

i Fnex

EISIexf
a

⋅
−=
∑ =1

,
1

()

î





≠

−
−
=

= minimaxi

minimaxi

mini
j

iki

minimaxi
i
j ff

ff

fEISIf

ff

,,

,,

,

,,

 if ;,

 if 0;

β

(){ }N
jijimaxi EISIfMaxf

1, , =
=

As the distance between examples is a numerical value,
the change in the examples could be computed using the
equation 10.

BA

eB

I

B

BA

F

f

max

b

2

1
ln

2

2

−














−

=






 −

(10)

Where A and B are two constants to regulate the shape of
the function. This shape conforms how different the
examples have to be inside a block from the fitness of the
individual. The value calculate is used to generate
examples which a distance between genotipes equal to I.

For the evolution of examples the following rules are
used:

1. To generate the first example for the individual I (SIi)
2. To generate all the individuals in the block, the

equation 11 is used.

N(0,Ij) = D(Ei,Ei+1) (11)

Where N(0,I) is a Normal distribution, means 0, and
deviation I, and D(x,y) is the distance between examples x
and y. In other words, the examples are generated in such
a way that their distances follow a Normal distribution of
deviation Ij computed for SIj.

IV. DENSITY CLASSIFICATION PROBLEM

The Density Classification Problem (DCP) is one of the
most studied problems in Cellular Automata (CA) [12].
This problem is interesting from both, theoretical and
practical aspects, and it has been proven the non-existence
of any rule able to solve the problem for a binary CA with
a neighborhood of radius one [13]. The DCP is defined by
the equation 12.

()
() ()
() ()

()
î






=
>=Ψ
<=Ψ

=

c0

c00

c00

 if determinednot

 if 1

 if 0

,

ρρ
ρρ
ρρ

ρ

s

ss

ss

MNT N
m

N
m

c
 (12)

Where Tρc(N,M) is an unidimensional DCP of size N, with
a critical density of ρc and after M updating periods. If the
initial density ρ(s0), is smaller than the critical density, the
CA has to transit, after M steps, to a configuration of all
zeros. s0 is the initial configuration, the configuration of a
CA after some i steps is si=Ψ(s0), where the function Ψ
defines the rule of the CA.

Figure 1 shows the application of Uniform Coevolution to
DCP. A canonical genetic algorithm is applied in SGS,
EGS evolve with mechanisms previously described in
general Uniform Coevolution architecture.

Figure 1: Uniform Coevolution architecture applied to
DCP.

A. Experimental environments

Six kinds of experiment have been performed. In table 1
is shown a brief description of each type of experiment.

Table 1: Experiments description.

Experiment Examples set Dom. Know.

FixedNI Constant No
Fixed Constant Yes
RamdomNI Random No
Random Random Yes
CoevNoSPC Evolutive No
CoevUni Evolutive No

A total of 30 experiments of each type have been realized
to overcome the stochasticity of the GA. In all the
experiments a GA have been used to evolve the solutions.
In tables 2 and 3 the GA and CA parameters of runs are
shown.

To test the generalization capability of the obtained CA
rules a total of 1000 new initial configurations are
generated.

Table 2: GA parameters.

Population size 100
Chromosome length 128
Crossover probability 0.9
Mutation probability 0.01
Elitism 0.05
Generations 500
Selection operator Tournament (3)

Table 3: CA parameters.

States Binary
Neighborhood 7
Dimension Uni-dimensional
Number of rules 3.4×1038

Boundary conditions Periodic
Lattice size 149
Number of initial configurations 7.1×1044

These initial configurations are the same for all the
experiments and are equally distributed in ten density
intervals. This supposes one hundred configurations of
density between 0.0 and 0.1, one hundred between 0.1
and 0.2 and so on. The percentage of successfully
classified configuration is the measure of generalization
of the rule.

Table 4: Generalization results

Experiment Best Value Average Value Sigma
FixedNI 93.46% 91.68% 0.92
Fixed 93.98% 70.74% 20.43
RamdomNI 93.01% 92.10% 0.27
Random 94.10% 92.55% 0.51
CoevNoSPC 93.48% 92.55% 0.42
CoevUni 93.61% 92.63% 0.51

0

0.2

0.4

0.6

0.8

1.0

858789919395

Fitness
Value

fix fixNI rand randNI coevNOSPC coevUNIF

Figure 2: Accumulative probabilit y of finding a specific
solution.

The results of this generalization test are summarized in
table 4. There are not fundamental differences in best
values for all the experiments, however from the average
values it can be inferred some conclusions. For the
FixedNI experiment the average value is shorter. In this
case some times the solutions correspond with a local
minimum in generalization. This is due to a problem of
over-fitting. With the elimination of information in the
fitness function, the learning process become less
accurate, and in generalization the over-fitting problem
can be overcome. Besides, the Co-evolutive experiments

show a better generalization capabilit y, and the inclusion
of the SPC mechanisms helps to achieve this higher
generalization level. These best results are achieved even
without including any domain dependent information in
the fitness function for the Co-evolutive experiments. It is
expected that with such that information the results could
be improved.

In stochastic methods the information of the best solution
found can be non-realistic. To really compare the
eff iciency of some methods is better to have an estimation
of the easiness of finding a solution in one run. In figure
2, the probabilit y of each solution is shown. For the Co-
evolutive experiments all the solutions have a value of
generality higher than 92.5%, and there is a probabilit y of
0.1 of finding solutions of above 94%.

V. CONCLUSIONS

The Uniform Coevolution method allows the production
of generalized behaviors gradually, changing by time the
selective pressure of the individuals. At the beginning,
good behaviors are searched, without taking into account
the environment. The selective pressure is addressed to
the generation of good behaviors in simple environments.
As the individuals are adapting to environments, the
selective pressure change to search good individuals in
gradually more different environments.

In this way, although changing, a similar and smooth
fitness landscape is always kept, that allows the adaptation
at the same time at the generation of more complex and
generalized behaviors. This solves the problem of over-
adaptation. The results show how the learning process in
Uniform Coevolution goes gradually and uniformly
achieving generalization and avoiding local minimal.

The method can be used in any inductive learning
problem that uses evolutionary computation mechanisms,
to solve the testing problem. The advantage arises from
the gradually and independent evolution of the examples,
adapting to each particular solution tested. The results
have been presented from the solutions point of view, but
the analysis of the examples sets finally generated could
give some important information about the problem being
studied.

VI. BIBLIOGRAPHY

[1] W. D. Hill is, “Co-evolving parasites improve simulated
evolution as an optimization procedure” , Artificial Life II, ed.
C.G. Langton, Addison-Wesley, Santa Fe Institute, Reading, MA,
pp 313-324, 1991.

[2] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary
approach to function optimization” , Proceedings of the third
conference on parallel problem solving from nature, Y. Davidor
and H.P. Schwefel and R. Manner, vol 866, Lecture notes in
computer science, Springer Berlag, Berlin, pp. 249-257, 1994.

[3] P.J. Angeline and J.B. Pollack, “Competiti ve environments
evolve better solutions for complex tasks” , Proceedings of the
Fifth International Conference on Genetics Algorithms, ed. S.
Forrest, Morgan Kaufmann, San Mateo, CA, pp: 264-270, 1993.

[4] R. E. Smith and B. Gray, “Co-adaptive genetics algorithms: An
example in Othello strategy” , Proceedings of the Florida Artificial
Intell igence Research Symposium, 1994.

[5] C. W. Reynolds, “Competition, coevolution and the game of
Tag” Artificial Life IV, ed. C.G. Langton, Addison-Wesley, Santa
Fe Institute, Reading, MA, 1996,

[6] Rosin C.D., Belew R.K. “A competiti ve approach to game
learning” . Proceedings of the 9th Annual ACM Workshop on
Computational Learning Theory. New York: Association for
Computing Machinery, 1996.

[7] J. Paredis, “Coevolutionary computation” , Artificial Life, vol. 2
, pp: 355-375, 1996.

[8] Rosin C.D., Belew R.K. “New Methods for Competiti ve
Coevolution” . Evolutionary Computation (pp. 1-29) 5(1), 1997.

[9] Isasi P., Berlanga A., Molina J.M. And Sanchis A. “Robot
Controller against Environment, a Competiti ve Evolution” .
Special Session on Evolutionary Computation, 15th IMACS
World Congress 1997 on Scientific Computation, Modell ing and
Applied Mathematics, Alemania , pp 349-354,1997.

[10] Molina J.M., Sanchis A., Berlanga A., Isasi P. “Evolving
Connection Weight Between Sensors and Actuators in Robots” .
IEEE International Symposium on Industrial Electronics. 1997.

[11] Berlanga A., Molina J.M., Sanchis A., Isasi P. “Applying
Evolution Strategies to a Neural Network Robot Controller” . 5th
International Work-Conference on Artificial and Neural Networks,
IWANN’99. Alicante, España. 1999.

[12] J. Paredis, “Coevolving cellular automata: Be aware of the red
queen!” , Proceedings of the Seventh International Conference on
Genetic Algorithms, Morgan Kaufmann, pp: 393-400, 1997.

[13] Land M., Belew R.K. “No Perfect Two-State Cellular
Automata for Density Classification Exists” . Physical Review
Letters. 74:25. (pp. 5148-5150, 1995.

